Wandering Space Rocks Help Solve Mysteries of Planet Formation - 8 minutes read


Quanta Magazine

Recent work argues indirectly that they are indeed common. In 2018, researchers identified eight hyperbolic comets that could have originated around a different star. And in April, Amir Siraj and his adviser, Avi Loeb, an astronomer at Harvard University, argued that a meteorite that burned up in Earth’s atmosphere in 2014 likely came from outside the solar system as well.

“The fact that they offer this means by which you can start to accrete stuff means that this has to be, I think, a plausible thing we need to add into our understanding of how these bodies grow,” Byrne said.

Bannister said the notion of planet seeds could even explain why no one has found extremely ancient planets around the earliest stars in the galaxy. “Maybe in the early history of the galaxy, we didn’t have enough seeds,” she said. “Maybe [the planets] formed more slowly, and potentially with less efficiency.”

Yet if these ‘Oumuamua-like rocks can explain both why planets in the distant past were rare, and why planets today form so quickly, that raises a new question: Where did the first seeds come from?

Gas and dust swirl around young stars in great, thick disks, which are roiled with turbulence and filled with eddies. Somehow, in a process researchers don’t understand, dust grains in these disks combine to form millimeter-size rock particles called chondrules. These are a major ingredient in the solar system’s most common form of space rock and in chondrites, the most common form of meteorite that falls on Earth.

Since chondrites are common, chondrules must have been a common ingredient when the planets were being forged. They were some of the first solids, and they help date the solar system and its fundamental building blocks. Researchers have some ideas about how chondrules come together to form larger chondrites. But even with today’s best computer simulations and the most fine-grained observations of other planetary systems, there’s no consensus on how chondrules themselves form.

It’s as though the solar system were made of scores of brick houses. Researchers understand the process by which bricks come together to make a house. But what makes the bricks?

Part of the problem is that no model can satisfy all of chondrules’ particular qualities, Stewart said. These tiny igneous blobs must have suddenly melted at temperatures as high as about 2,000 degrees Celsius, an extreme state that the best models of solar system formation have trouble reproducing. Ideas for how chondrules are formed include lightning; chemical reactions resulting in a sort of spontaneous combustion; shock waves from nearby supernova explosions; magnetic fields; collisions of planetesimals such as ‘Oumuamua; gamma ray bursts; and warmth from planetesimals that were still molten from stellar formation processes.

Stewart proposes another possibility. She said that gas flows caused by violent, vaporizing collisions can shove together the smallest droplets of molten rock, which begin to combine. The idea is unique in that it combines astrophysics with planet formation processes in ways researchers have not done before.

Stewart studies a strange new planetary phase called a synestia, which she and Simon Lock, a planetary scientist now at the California Institute of Technology, proposed in 2017 to describe the formation of the moon. A synestia is a bloated, swollen cloud of vaporized rock shaped like a puffy bagel. In a synestia, the material that made the Earth and moon would have thoroughly mixed.

While fiddling with some of her code, Stewart realized that something similar could drive the precursors of chondrules together so they can combine, like pebbly biscuit batter that eventually forms a cohesive dough.

The process would start with planetesimals, primordial pieces of rock surrounding the young sun. They might be interlopers like ‘Oumuamua. Alternatively, they might have formed very soon after our star was born. Whatever their origin, they would be plentiful, and they would collide with each other inside the gas-filled solar nebula, in a billiard game of mutual assured destruction.

When these primitive planetesimals collided, they would vaporize, and their vapor would expand into the still-hot solar nebula. This vaporization would happen with such heat and force that it would create a bow shock, similar to how an airplane causes a sonic shock wave when it blows through the sound barrier. The bow shock would push the nebula gases out, creating a central area of low pressure. Then, as the vapor plume collapsed to fill this area of low pressure, the gas flows would shepherd together the droplets of vaporized rock. The vapor plume expansion and its subsequent collapse would create droplets of silicate that are consistent with the sizes of chondrules.

“You need gas to blow the pebbles together, so they can collide and combine,” Stewart said.

This all happens in a flash — over days to weeks, barely a breath on planetary timescales. But this transient, violent process is apparently crucial to how our solar system formed, Stewart said. She points out that the role of nebular gas, and how it interacts with vaporized rock, was unrecognized before.

“When I was working on it, I kept looking at it and going, ‘Oh, I broke the code!’ Then, ‘No, wait! That’s real physics,’” she said. “There were crazy things we had never seen before, because no one had put in the gas.”

She presented her early findings at the Lunar and Planetary Science Conference in Houston in March, but her results are not yet published.

But for her chondrule-generating ideas to work, Stewart still needs an initial seed — the planetesimals that destroy each other to make chondrules. Where these seeds come from is a question for later research, Stewart and her colleagues say. Maybe the solar system was full of ‘Oumuamua-esque seeds passing through — just as Bannister and Pfalzner suggest could be happening among the newer generation of planets.

Still, Stewart said she has gotten an “aha response” to the work. “This is a discovery in the pure sense. It’s got that feels-right aspect to it,” she said.

Stewart’s work on chondrules and Bannister and Pfalzner’s ideas about planet formation are part of an emerging understanding that even in space, everything is connected. “You have to go through a huge amount of different fields in astrophysics,” Pfalzner said: “the interstellar medium, molecular clouds, formation of stars, the disks around them, the formation of planets.”

Data from future observatories like the Large Synoptic Survey Telescope (LSST) could intensify the need to think across many different size scales. The LSST might be able to resolve tiny pebbles in our solar system, allowing astronomers to search for more ‘Oumuamua-like objects. “I think it’s really, really exciting if our solar system is chock-full of these interstellar fragments that have come from other solar systems, that there are bits of other solar systems floating around,” Byrne said. “LSST is going to open this whole new world,” one that connects our solar system to other solar systems throughout the cosmos across time and space.

Said Bannister, “The implications are so much fun.”

Source: Quantamagazine.org

Powered by NewsAPI.org

Keywords:

Quanta MagazineHyperbolic trajectoryCometStarAvi LoebAstronomerHarvard UniversityMeteoriteAtmosphere of EarthSolar SystemObject (philosophy)Human bodyPlanetPlanetThe History of the GalaxyPlanetPlanetInterstellar mediumTurbulenceEddy (fluid dynamics)Cosmic dustChondruleSolar SystemSpace rockChondriteMeteoriteEarthChondriteChondrulePlanetSolidSolar SystemChondruleChondriteComputer simulationPlanetary systemChondruleSolar SystemHouseChondruleIgneous rockTemperatureCelsiusFormation and evolution of the Solar SystemChondruleLightningSpontaneous combustionShock waveSupernovaMagnetic fieldCollisionPlanetesimalGamma-ray burstHeatPlanetesimalMeltingStar formationGasFluid dynamicsEvaporationAstrophysicsNebular hypothesisScientific methodPlanetary phasePlanetary scienceCalifornia Institute of TechnologyOrigin of the MoonRock (geology)Glossary of tennis termsChondruleBiscuitDoughPlanetesimalPrimordial nuclideRock (geology)SunStarAbiogenesisFormation and evolution of the Solar SystemMutual assured destructionPlanetesimalVaporHeatFormation and evolution of the Solar SystemVaporizationHeatForceShock waveAirplaneSupersonic speedShock waveSound barrierShock waveNebulaGasLow-pressure areaVaporPlume (fluid dynamics)Low-pressure areaGasFluid dynamicsDrop (liquid)EvaporationRock (geology)Water vaporPlume (fluid dynamics)Thermal expansionSilicateChondruleGasSolar SystemGasRock (geology)PhysicsLunar and Planetary Science ConferenceHoustonChondrulePlanetesimalChondruleSolar SystemPlanetAmerican Heart AssociationChondruleIdeaNebular hypothesisSpaceField (physics)AstrophysicsInterstellar mediumMolecular cloudStar formationNebular hypothesisObservatoryLarge Synoptic Survey TelescopeLarge Synoptic Survey TelescopeLarge Synoptic Survey TelescopeSolar SystemSolar SystemInterstellar mediumLarge Synoptic Survey TelescopeA Whole New WorldSolar SystemUniverseSpacetime